

MAHARANI LAKSHMI AMMANNI COLLEGE FOR WOMEN

(NAAC ACCREDIDATED B++)

UGC SPONSORED CAREER ORIENTED COURSE

COURSE STRUCTURE DIPLOMA COURSE IN BIOINFORMATICS

Prerequisite : Certificate	Total Hours: 160
	(Theory:100 hrs & Practicals:60 hrs)

Objective : To turn the flood of new bio-information into useable knowledge and to enhance the students in data mining and knowledge management technologies that are being deployed today to assist researchers and regulators.

Module	Title of the Paper	Theory	Practical	Total Hours
		Hours	Hours	
Ι	Basics of Cell and	40	-	40
	Molecular			
	Biology, Biochemistery			
	and Genetics			
II.	Introduction to	10	20	30
	Bioprograming and			
	Biological Databases			
III.	Computational Biology	30	10	40
IV	Mathematics and	20		20
	Statistics			
V	Project work		30	30

Diploma- Bioinformatics Detailed Syllabus

Module 1. Basics of Biochemistry and Genetics (Biology)

40

Biochemistry

- **1. Proteins:** amino acids and peptides: primary, secondary, tertiary and quaternary s structures.
- **2. Nucleic acids:** Bases, nucleotides, RNA and DNA. Different conformation of DNA, denaturation and renaturation of DNA.
- **3.** Energy molecules, Signal molecule (Classification, structure and function)

Genetics

- **4. Prokaryotic genome** organization and structure.
- 5. Eukaryotic genome organization and structure, mechanism of gene expression in eukaryotes, promoter & regulator sequences, restriction enzymes Phenotype and genotype relationships, role of environment from gene to phenotype, gene interactions, study of quantitative traits
- 6. Mutations- molecular, gene/point and chromosomal types and molecular basis.
- 7. **Phenotype and genotype** relationship, gene interactions
- 8. Gene expression : In prokaryote & In Eukaryotes
- 9. Human genome and Bioethics

Module 2. Introduction to Bioinformatics, Bio-programming & Biological Databases 30

- 1. Overview and functions of a computer system, input and output devices, storage devices(primary and secondary), memory (register, buffer, RAM, ROM, PROM, EPROM, EEPROM)
- 2. Relationship of IT & Bioinformatics; Introduction to Bioinformatics, Application of Bioinformatics, Applied Bioinformatics, Operating Systems (including windows and UNIX), Web access, Introduction to networking.

3. HTML (Hyper Text Markup Language)

Overview of HTML and HTTP, Web servers, HTML technology and applications with examples related to Biotechnological field. Building biological database with HTML.

4. RDBMS.

What are Biological databases? Objectives and scope of databases, general perspective on DBMS.

6. PERL:

Basic; Perl facts, features, advantages, starting perl, variables, perl functions, conditionals, subroutines, files.

Module 3. Computational Biology

1. INTRODUCTION:

Definition, Scope, Targets and applications of Computational Biology and Bioinformatics.

2. NINE WEB RESOURCES ON INTERNET

3. BIOLOGICAL DATABASES AND SEARCH ENGINES:

a. **Sequence Databases:** The nucleotide and protein sequence Databases: Introduction, Primary and Secondary Databases, Format Vs. Content, The Database. The Gene bank file- A dissection.

b. Structure Databases: Introduction to Structures, PDB: Protein Data Bank, Molecular Modeling Database at NCBI, Structure file formats, visualizing structural information, Database structure viewers.

c. Sequence searches in Biological databases:

The search process, search engine technology, Information theory, search algorithms, approximate searches; search engines; Data retrieval tools; data mining and data annotation.

4. SEQUENCE ALIGNMENT

(I) Pairwise sequence alignment:

Basic concept of sequence alignment. Needleman& Wuncsh. Smith & Waterman algorithms for pairwise alignments. Use of pair wise alignment for analysis of Nucleic acid and protein sequence and interpretation of result.

(II) Multiple sequence alignment:

The need for MSA. Basic concepts various approaches for MSA. Algorithm of CLUSTAL W and Pileup and their application for sequence analysis (including interpretation of result). Concept of dendrograms and its interpretation.

5. PHYLOGENETIC ANALYSIS

Introduction to Phylogeny; Methods of Phylogenetic analysis, construction of Phylogenetic trees; Deriving Phylogenetic inferences through Phylogenetic trees.

Module 4. Mathematics and Statistics

Number integration, interpolation and approximate methods, concept of Eigenvectors and eigenvalues, Poisson and extreme value distribution **System of linear equations**

Partial Differential equations: Review of basic concepts, Numerical methods, Mathematical modeling and simulation, multivariate analysis, Hypothesis testing, Markov process

References

- 1. Bioinformatics- Managing scientific data, Lacroix and Critchlow.
- 2. Bioinformatics-Concepts, skills and Applications, Rastogi et.al.
- 3. Bioinformatics computing, Bergeron.
- 4. Developing Bioinformatics Computer skills, Gibbon and Jambeck.
- 5. Bioinformatics A practical Guide. Gibbon and Jambeck.
- 6. Bioinformatics a beginners Guide, J. M. Claverie and C. Notredame.
- 7. Bioinformatics- Methods and applications, Rastogi et. al
- 8. An Introduction to computational Biochemistry, StanTsai,
- 9. Biological sequence analysis, probabilistic models of proteins and nucleic acids, Dubin *et.al.*
- 10. Introduction to Bioinformatics- a theoretical and practical Approach, Krawetz and Wamble
- 11. Bioinformatics- A practical guide to the analysis of genes and proteins, Baxevanis and Ouellette (Eds).
- 12. Bioinformatics- Sequence and genomic analysis, David Mount.
- 13. Microarray Bioinformatics by Stekel.
- 14. Mastering perl for Bioinformatics by James D.Tisdall
- 15. Bioinformatics by Dr. K.Mani & N.vijayaraj
- 16. Advanced Perl programming by sriram srinivasan.
- 17. Programming Perl by Lany wall& Tom christiansel
- 18. Effective perl programming by Addison Wesley.
- 19. Elements of programming with Perl by Andrew .johnson
- 20. Zeta perl module: www.loc.gov/z3950/ zig/meetings/texas/tutorials/zetaperl.ppt
- 21. http://www.dddc.ac.cin/emb004/
- 22. http://chemweb.ucc.ie/people/JJKeating/jjkeating.htm
- 23. JGP files
- 24 Genome by T.A.Brown