

Affiliated to Bengaluru City University Re-accredited by NAAC with "A" grade, Recognised by UGC under Section 2(f) and 12(b) of the UGC Act 1956 Conferred the Status of 'College with Potential for Excellence' by UGC

DEPARTMENT OF MICROBIOLOGY

NEP SYLL&BUS

2021 ONWARDS

Affiliated to Bengaluru City University Re-accredited by NAAC with "A" grade, Recognised by UGC under Section 2(f) and 12(b) of the UGC Act 1956 Conferred the Status of 'College with Potential for Excellence' by UGC

DEPARTMENT OF MICROBIOLOGY

PROGRAMME SPECIFIC OUTCOMES

PSO.1 - learning scientific reasoning skills and explore the basic concepts and application of Microbiology and its applied branches.

PSO.2 – Sequestering & Classification of various microbial forms and their significance, illustrating the acquired hands-on skills in Environmental, Food, Dairy and Medical Microbiology.

PSO.3 – Practicing strong oral, Writing and Entrepreneurship skills through seminars, Group discussions, projects, and field visits.

PSO.4 – Motivating students towards Research, critical thinking, and practice a wide range of careers in Global and Public health.

Affiliated to Bengaluru City University Re-accredited by NAAC with "A" grade, Recognised by UGC under Section 2(f) and 12(b) of the UGC Act 1956 Conferred the Status of 'College with Potential for Excellence' by UGC

DEPARTMENT OF MICROBIOLOGY

COURSE OUTCOMES

Name of the Program: B.Sc Microbiology

Semester: |

Course Title: General Microbiology

Course code: MIC 101 -T

Academic year: 2023 – 24

Number of Credits: 04

I SEMESTER - THEORY

- **CO1**: Students will acquire basic knowledge about microorganisms, technical terminologies of microscopy, staining, culture media and sterilization with a fundamental understanding of prokaryotic and eukaryotic cell organization
- **CO2**: Understand the concepts related to branches of microbiology, gain insight into microbial origin of life through their fossilization process, microscopy types, media design and preparation, types of staining; sterilization and culture preservation and to differentiate prokaryotic and eukaryotic systems through distinguishable staining properties.
- **CO3**: Capable of analyzing the historical contributions, scope of microbiology, significance, and application of microscopy, staining and sterilization and understand to differentiate prokaryotic and eukaryotic cells
- **CO4**: Inculcate the perceptions on major discoveries in microbiology, advanced microscopy, and microbe control methods; they shall also be able to categorize microbes on structural, cellular, and morphological differences, compare and categorize organisms with prokaryotic and eukaryotic features
- **CO5**: Students can evaluate the differences in microscopy, staining and sterilization methods with a thorough understanding of prokaryotic and eukaryotic cell characteristics

Affiliated to Bengaluru City University Re-accredited by NAAC with "A" grade, Recognised by UGC under Section 2(f) and 12(b) of the UGC Act 1956 Conferred the Status of 'College with Potential for Excellence' by UGC

Name of the Program: B.Sc Microbiology Course Title: General Microbiology Semester: |

Course code: MIC 101 -P

Academic year: 2023 – 24

Number of Credits: 02

I SEMESTER - PRACTICAL

CO 1: Students are trained for handling of microscope; use of oil immersion and to recognize and identify various laboratory instruments

CO 2: Practical skills such as aseptic methods and sterilization procedures are taught as preliminary procedures in microbiology

CO3: Students gain hands-on experience to enumerate and categorize microbes based on staining

: Students are trained for handling of microscope; use of oil immersion and to recognize and identify various laboratory instruments

I SEMESTER – OPEN ELECTIVE

Name of the Program: B.Sc Microbiology Semester: I

Course Title: Microorganisms in Human welfare

Course code: MIC- OEC -101

Academic year: 2023 – 24

Number of Credits: 03

CO1: Students shall be able to define and enlist the microbes in human welfare

CO2: Students are taught to illustrate the role of microorganisms in food, Agriculture and Pharmaceutical industry

CO3: Students accomplish to explain the significance of beneficial microbes in fermented foods, plant growth and disease therapy

I SEMESTER B.SC MICROBIOLOGY

SYLLABUS

NEP BATCH

B.Sc. Microbiology (Basic / Hons.), First Semester

MIC-101T: General Microbiology

Course Title: General MicrobiologyCourse Code: MIC-101TL-T-P per week: 4-0-0Total Contact Hours: 56Course Credits: 04Formative Assessment Marks: 40Duration of ESA/Exam: 2 ½ hrsModel Syllabus Authors: CurriculumSummative Assessment Marks: 60CommitteeSummative Assessment Marks: 60

Unit – 1: Historical development and origin of microorganisms 14 hrs

• Introduction to Microbiology, Habitat. Fossil evidence of microorganisms. Origin of life, primitive cells and evolution of microorganisms.

• Historical development of Microbiology – Theory of spontaneous generation, Biogenesis and Abiogenesis.

• Contributions of Antony van Leeuwenhoek, Louis Pasteur, Robert Koch, Joseph Lister, EdwardJenner, Alexander Fleming, Martinus Beijernick, Sergei Winogradsky and Elie Metchnikoff.

• Contribution of Indian scientists in the field of Microbiology.

• Microscopy- working principle, construction and operation of simple and compound microscopes. Different types of microscopes - Phase contrast, Bright Field, Dark Field, Fluorescent, Confocal, Scanning and Transmission Electron Microscopes

Unit – 2: Staining, sterilization and preservation techniques 14 hrs

• Staining: Nature of stains, principles, mechanism, methods and types of staining-simple, Differential-Gram staining, acid fast staining, capsule staining, endospore, and inclusion bodies.

• Sterilization: Principles, types and techniques - physical and chemical.

• Microbiological culture media: Types, Composition, Preparation, Application and storage; Ingredients of media, natural and synthetic media, chemically defined media, complex media, selective, differential, indicator, enriched and enrichment media.

• Preservation of microorganisms: Methods of preservation, slant culture, stab culture, soil culture, mineral oil overlaying, glycerol preservation, Lyophilization.

Unit – 3: Prokaryotic microorganisms

14 hrs

• Overview of prokaryotic cell structure: Size, shape, arrangement.

• Ultra structure of prokaryotic cell: bacterial and archaeal - cell wall and cell membrane. Components external to cell wall - capsule, slime, s-layer, pili, fimbriae, flagella; structure, motility, chemotaxis. Cytoplasmic matrix - Cytoskeleton, ribosome, inclusion granules:

56 hrs

Composition and function.

• Nuclear Materials – bacterial structure (its differences with the Eukaryotic chromosome); ExtraChromosomal material.

• Bacterial Endospore - Examples of spore forming organisms, habitats, function, formation and germination. Reproduction in bacteria.

Unit – 4: Eukaryotic microorganisms

14 hrs

• Overview of eukaryotic cell: Types of cells;

• Structure and function of organelles- cell wall, cell membrane, cytoplasmic matrix, cytoskeleton, endoplasmic reticulum, Golgi complex, peroxisomes, lysosomes, vesicles, ribosomes, mitochondria, chloroplast, and nucleus. Structure and functions of flagella.

• Reproduction in fungi-Vegetative, asexual, and sexual

General Microbiology Practical

Course 01: Practicals MIC-101P Course Title: General Microbiology	Course Credits: 02
Course Code: MIC-101P	L-T-P per week: 0-0-4
Total Contact Hours: 56	Duration of ESA/Exam: 4h
Formative Assessment Marks: 25	Summative Assessment Marks: 25

1. Microbiological laboratory standards and safety protocols

2. Operation and working principles of light and compound microscope

3. Working principle and operations of basic equipment's of microbiological laboratory (Autoclave, oven, incubator, LAF, spectrophotometer, colorimeter, vortex, magnetic stirrer etc.).

4. Bacterial motility by hanging drop method

5. Simple staining – Negative staining

6. Differential staining – Gram staining

7. Acid fast staining

- 8. Structural staining Flagella and capsule
- 9. Bacterial endospore staining
- 10. Staining of reserved food materials (granular)
- 11. Staining of fungi by lactophenol cotton blue
- 12. Type study fungi Aspergillus, Cladosporium, Rhizopus

Pedagogy: Written Assignment/Presentation/Project / Term Papers/Seminar Formative Assessment		
Assessment Occasion	Weightage in	
House Examination/Test	20	
Written Assignment/Presentation/Project / Term	15	
Class performance/Participation	05	
Total	40	

Text Books/References

1. Alexopoulos, C.J., Mims, C.W. and Blackwell, M. 2002. Introductory Mycology.John Wiley and Sons(Asia) Pvt. Ltd. Singapore.869 pp.

- 2. Atlas, R.M. 1984. Basic and practical microbiology. Mac Millan Publishers, USA.987pp.
- 3. Black, J.G. 2008. Microbiology principles and explorations.7th edition. John Wiley and Sons Inc., NewJersey. 846pp.

1. Dubey, R.C. and Maheshwari, D.K. 1999. A Textbook of Microbiology, 1st edition, S. Chand & CompanyLtd.

2. Madigan, M.T., Martinko, J.M., Dunlap, P.V. and Clark, D.P. 2009. Brock Biology of Microorganisms, -12th edition, Pearson International edition, Pearson Benjamin Cummings.

3. Michael Pelczar, Jr., Chan E.C.S., Noel Krieg 1993. Microbiology - Concepts and Applications, International ed, McGraw Hill.

4. Pommerville, J.C. 2013. Alcamo's Fundamentals of Microbiology. Jones and Bartlett.

5. Schlegel, H.G. 1995. General Microbiology. Cambridge University Press, Cambridge, 655 pp.

6. Stanier, Ingraham et al. 1987. General Microbiology, 4th and 5th edition Macmillan education limited.International, edition 2008, McGraw Hill.

7. Talaro, K.P. 2009. Foundations in Microbiology, 7th International edition, McGraw Hill.

8. Tortora, G.J., Funke, B.R. and Case, C.L. 2007. Microbiology 9th ed. Pearson Education Pvt. Ltd., SanFrancisco.958 pp.

9. Tortora, G.J., Funke, B.R., Case C.L. 2008. Microbiology an Introduction, 10th ed. Pearson Education.

10. Willey, J. M., Sherwood, L., Woolverton, C. J., & Prescott, L. M. (2008). Prescott, Harley, and Klein'sMicrobiology. New York: McGraw-Hill Higher Education.

Course 02: Theory MIC-OEC-101: Microorganisms for Human Welfare Content	<u>42 hrs</u>
 Unit – 1: Food and Fermentation Fermented Foods – Types, nutritional values, and health benefits Probiotics, prebiotics, synbiotic and nutraceuticals Fermented Products – Alcoholic and non-alcoholic beverages, dairy products 	14 hrs
 Unit – 2: Agriculture Bio-fertilizers and bio-pesticides - types and applications Beneficial microorganisms in agriculture, VAM fungi Mushroom cultivation Biogas production 	14 hrs
 Unit – 3: Pharmaceutical Industry Drugs – types, development and applications Antibiotics – types, functions and antibiotic therapy Vaccines – types, properties, functions and schedules 	14 hrs

Textbooks/References

- 1. Ananthnarayan, R and JayaramPanicker, C. K. 2010. Textbooks of Microbiology, Orient Longman.
- 2. Dubey, R.C. and Maheshwari, D.K. 2013. A Textbook of Microbiology –2nd edition (S chand& Co. N.Delhi).
- 3. Michael, J. Pelczar, Jr. E.C.S., Chan, Noel R. 1998. Krieg Microbiology Tata McGraw- Hill Publisher.
- 4. Pelczar, M.J., Chan E.C.S. and Kreig, N.R. 1993. Microbiology 5th edition (Tata McGraw-Hill, New Delhi)
- 5. Prescott, L.M., Harley, J.P. and Klein, D.A., 2007. Microbiology –7th edition (Wm. C. Brown

Publishers, USA) Elementary Microbiology – Modi, HA (vol. I), 1st edition (EktaPakashan, Nadiad).

6. Prescott, M.J., Harly, J.P. and Klein 2002. Microbiology 5ft Edition, WCB McGraw Hill, New York.

7. Sateesh, M.K. 2010. Bioethics and Biosafety.IK International Pvt Ltd. 2.Dubey, RC A Textbook ofBiotechnology.S Chand Publications.

- 8. Singh, B.D. 2013. Expanding Horizons in Biotechnology. Kalyani Publication.
- 9. Sree Krishna, V. 2007. Bioethics and Biosafety in Biotechnology, New age international publishers
- 10. Willey, J.M., Sherwood L.M and Woolverton C.J., Prescott, Harley and Klein's. 2013. Microbiology.McGraw Hill Higher education.9th Edition.

II SEMESTER B.SC MICROBIOLOGY

SYLLABUS

NEP BATCH

Affiliated to Bengaluru City University Re-accredited by NAAC with "A" grade, Recognised by UGC under Section 2(f) and 12(b) of the UGC Act 1956 Conferred the Status of 'College with Potential for Excellence' by UGC

DEPARTMENT OF MICROBIOLOGY COURSE OUTCOMES---- II SEM THEORY (NEP)

Name of the Program: B.Sc Microbiology

Semester: II

Course Title: Microbial Biochemistry and Physiology

Course code: MIC 201 -T

Academic year: 2023 – 24

Number of Credits: 04

CO1: Students will attain basic knowledge about major elements of life, necessity of biomolecules, requirements of microbial nutrition with an necessary understanding of microbial respiration and photosynthesis

CO2: Able to understand the atomic and chemical bonds, classification levels of biomolecules, growth parameters of microbes and fundamentals of microbial metabolic processes

CO3: Capable of analysing the properties and significance of water and other biomolecules, growth enumeration patterns and mechanisms of microbial respiration and photosynthesis

CO4: Incorporate in-depth knowledge to differentiate biomolecules; help to apply the different metabolic situations and pathways in microbes

CO5: Students can evaluate the differences solution preparation, biomolecular differences, diverse nutrition levels and understand the physiology of microbes

COURSE OUTCOMES--- II SEM PRACTICAL (NEP)

Name of the Program: B.Sc Microbiology

Semester: II

Course Title: Microbial Biochemistry and Physiology

Course code: MIC 201 -P

Academic year: 2023 – 24

Number of Credits: 02

CO 1: Students are trained for preparation of solutions with basic calculations

CO 2: Practical skills to qualitatively estimate biomolecules are taught which shall enable basics of quality control skills

CO3: Students gain hands-on experience to enumerate and categorize microbes based on growth parameters

Affiliated to Bengaluru City University Re-accredited by NAAC with "A" grade, Recognised by UGC under Section 2(f) and 12(b) of the UGC Act 1956 Conferred the Status of 'College with Potential for Excellence' by UGC

DEPARTMENT OF MICROBIOLOGY COURSE OUTCOMES--- II SEM OPEN ELECTIVE (NEP)

Name of the Program: B.Sc MicrobiologySemester: IICourse Title: Environmental Microbiology and Human HealthCourse code: MIC- OEC -201Academic year: 2023 – 24Number of Credits: 03CO1: Students shall able to define and recollect the microbes in soil, air, water and human healthCO2: Students are taught to illustrate the role of microorganisms in environment and human diseaseCO3: Students accomplish to explain the significance of water standards and the role of microbes in human disease with an insight into epidemiology and disease surveillance mechanisms

B.Sc. Microbiology (Basic / Hons.), Second Semester

Course Title: MIC-201T Microbial Biochemistry and Physiology	
Course Code: MIC-201T	L-T-P per week: 4-0-0
Total Contact Hours: 56	Course Credits: 04
Formative Assessment Marks: 40	Duration of ESA/Exam: 2.5 h
Model Syllabus Authors: Curriculum Committee	Summative Assessment Marks: 60

Course 1: Theory MIC-201T : Microbial Biochemistry and Physiology

Unit – 1: Biochemical concepts

- **Basic Biochemical Concepts:** Major elements of life and their primary characteristics, atomic and chemical bonds covalent, non-covalent, ionic, hydrogen and Vander Waal's Forces
- **Biological Solvents:** Structure and properties of water molecule, water as an universal solvent, polarity, hydrophilic and hydrophobic interactions, acids, bases, electrolytes, pH and buffers, Henderson–Hasselbalch equation

Unit – 2: Macromolecules

- **Carbohydrates:** Definition, classification, structure and properties.
- Amino acids and proteins: Definition, structure, classification and properties of amino acids, structure and classification of proteins
- Lipids and Fats: Definition, classification, structure, properties and importance of lipids; fatty acids: types and classification
- **Porphyrins and Vitamins:** Definition, structure, properties and importance of chlorophyll, cytochromes and hemoglobin

Unit – 3: Microbial growth and nutrition

- **Microbial Nutrition:** Microbial nutrients, macro and micronutrients, classification of organisms based on nutritional requirements
- Membrane Transport: Structure and organization of biological membranes, Types of cellular transport passive, facilitated, active, group translocation, membrane bound protein transport system, carrier models, liposomes, ion channels, Na+K+-ATPase
- Microbial Growth: Definition, growth curve, phases of growth, growth kinetics, generation time. Synchronous culture, continuous culture (chemostat and turbidostat), coulter cultures, diauxic growth. Measurement of growth: Direct microscopic count - Haemocytometer; viable count, membrane filtration; electronic Counting; Measurement of cell mass; Turbidity measurements -Nephelometer and spectrophotometer based techniques; Measurement of cell constituents. Growth yield. Influence of environmental factors on growth

14 hrs

14 hrs

14 hrs

56 hrs

Unit - 4: Bioenergetics, Respiration and Photosynthesis

- 14 hrs
- **Bioenergetics:** Free energy, enthalpy, entropy, laws of thermodynamics. High energy compounds: classification, structure and significance, oxidation reduction reactions, equilibrium constant, redox potential
- Microbial Respiration: EMP pathway, Electron transport chain, protein translocation, and substrate level phosphorylation, oxidative phosphorylation, inhibitors of ETC and mechanism, structure and function of ATP synthase and ATP synthesis. Fermentation reactions (homo and hetero lactic fermentation)
- **Microbial Photosynthesis:** Light reaction: Light harvesting pigments, Photophosphorylation, CO₂ fixation pathways: Calvin cycle, CODH pathway, Reductive TCA pathway

Microbial Biochemistry and Physiology Practical

Course 01: Practicals: MIC-201P Course Title: Microbial Biochemistry and Physiology	Course Credits: 02
Course Code: DSC-P1 MBL102	L-T-P per week: 0-0-4
Total Contact Hours: 56	Duration of ESA/Exam: 4 h
Formative Assessment Marks: 25	Summative Assessment Marks: 25

- 1. Preparation of normal and molar solutions
- 2. Calibration of pH meter and determination of pH of natural samples
- 3. Preparation of buffer solutions (any 4)
- 4. Qualitative analysis of carbohydrates
- 5. Qualitative analysis of amino acids and proteins
- 6. Qualitative analysis of lipids
- 7. Estimation of reducing sugar by DNS method
- 8. Estimation of protein by Lowry's method
- 9. Determination of saponification values and iodine number of lipids/fatty acids
- 10. Determination of bacterial growth by turbidimetric method & calculation of generation time
- 11. Effect of pH, temperature and salt concentration on bacterial growth
- 12. Demonstration of aerobic and anaerobic respiration in microbes.

Pedagogy: Written Assignment/Presentation/Project / Term Papers/Seminar

Formative Assessment			
Assessment Occasion	Weightage in		
House Examination/Test	15		
Class performance/Participation	10		
Total	25		

Text Books/References

1. Alexopoulos, C.J., Mims, C.W. and Blackwell, M. 2002. Introductory Mycology.John Wiley and Sons (Asia) Pvt. Ltd. Singapore.869 pp.

2. Atlas, R.M. 1984. Basic and practical Microbiology.Mac Millan Publishers, USA.987 pp.

3. Black, J.G. 2008. Microbiology principles and explorations.7th edition.John Wiley and Sons Inc., New Jersey 846 pp.

4. Boyer, R. 2002, Concepts in Biochemistry 2nd Edition, Brook/Cole, Australia.

5. Caldwell, D.R. 1995 – Microbial Physiology and Metabolism. Brown Publishers

6. Dubey R.C. and Maheshwari D.K. 1999. A Textbook of Microbiology, 1st edition, S. Chand & Company Ltd.

7. Felix Franks, 1993. Protein Biotechnology, Humana Press, New Jersey.

8. Harper, 1999. Biochemistry, McGraw Hill, NewYork

9. Lodish, H.T. Baltimore, A. Berck B.L. Zipursky, P. Mastsydaire and J. Darnell. 2004. Molecular Cell Biology, Scientific American Books, Inc. Newyork

10. Madigan, M.T., Martinko J.M., Dunlap P.V., Clark D.P. 2009. Brock Biology of Microorganisms, 12th edition, Pearson International edition Pearson Benjamin Cummings.

11. Michael Pelczar, Jr., Chan E.C.S., Noel Krieg 1993. Microbiology - Concepts and Applications, International ed, McGraw Hill.

12. Moat, A. G., Foster, J.W. Spector. 2004. Microbial Physiology 4th Edition Panama Book Distributors.

13. Nelson, and Cox, 2000. Lehninger Principles of Biochemistry, Elsevier Publ.

14. Palmer, T. 2001. Biochemistry, Biotechnology and Clinical Chemistry, Harwood Publication, Chichester.

15. Pommerville, J.C. 2013. Alcamo's Fundamentals of Microbiology. Jones and Bartlett.

16. Schlegel, H.G. 1995. General Microbiology. Cambridge University Press Cambridge, 655 pp.

17. Stanier, Ingraham et al. 1987. General Microbiology, 4th and 5th edition Macmillan education limited.International, edition 2008, McGraw Hill.

18. Stryer, L, 1995. Biochemistry, Freeman and Company, New York.

19. Talaro, K.P. 2009. Foundations in Microbiology, 7th International edition McGraw Hill.

20. Toratora, G.J., Funke, B.R. and Case, C.L. 2007. Microbiology 9th edition. Pearson Education Pvt. Ltd., San Francisco. 958pp.

21. Tortora, G.J., Funke, B.R., Case, C.L. 2008. Microbiology-An Introduction, 10th ed. Pearson Education.

22. Voet and Voet, 1995; Biochemistry, John Wiley and Sons, New York.

23. Willey, J. M., Sherwood, L., Woolverton, C. J., and Prescott, L. M. (2008). Prescott, Harley, and Klein's microbiology. New York: McGraw-Hill Higher Education.

Theory: MIC-OEC-201: Environmental Microbiology and Human Health	42 hrs
Unit – 1: Soil and Air Microbiology	14 hrs
Soil and air as a major component of environment	
• Types, properties and uses of soil and air	
Distribution of microorganisms in soil and air	
Major types of beneficial microorganisms in soil	
Major types of harmful microorganisms in soil	
 Unit – 2: Water Microbiology Water as a major component of environment Types, properties, and uses of water Microorganisms of different water bodies Standard qualities of drinking water 	14 hrs
 Standard qualities of drinking water Unit – 3: Microbial Diseases and Control Public health hygiene and communicable diseases 	14 hrs

- Survey and surveillance of microbial infections.
- Air borne microbial diseases, water borne microbial diseases, Food borne microbial infections.
- Epidemiology of microbial infections, their detection and control.

Text Books/References

1. Alexopoulos, C.J., Mims, C.W., and Blackwell, M. 2002. Introductory Mycology.John Wiley and Sons (Asia) Pvt. Ltd. Singapore.869 pp.

2. Atlas, R.M. 1984. Basic and practical Microbiology.Mac Millan Publishers, USA.987 pp.

3. Black, J.G. 2008. Microbiology principles and explorations.7th edn.John Wiley and Sons Inc., New Jersey 846 pp.

4. Dubey R.C. and Maheshwari D.K. 1999. A Textbook of Microbiology, 1_{st} edition, S. Chand & Company Ltd.

5. Madigan, M.T., Martinko, J.M., Dunlap, P.V. and Clark, D.P. 2009. Brock Biology of Microorganisms, - 12th edition, Pearson International edition, Pearson Benjamin Cummings.

6. Michael Pelczar, Jr., Chan E.C.S., Noel Krieg 1993. Microbiology - Concepts and Applications, International ed, McGraw Hill.

- 7. Pommerville, J.C. 2013. Alcamo's Fundamentals of Microbiology. Jones and Bartlett.
- 8. Schlegel, H.G. 1995. General Microbiology. Cambridge University Press, Cambridge, 655 pp.

9. Stanier, Ingraham et al. 1987. General Microbiology, 4th and 5th edition Macmillan education limited.International, edition 2008, McGraw Hill.

10. Talaro, K.P. 2009. Foundations in Microbiology, 7th International edition, McGraw Hill.

11. Toratora, G.J., Funke, B.R. and Case, C.L. 2007. Microbiology 9th ed. Pearson Education Pvt. Ltd., San Francisco.958 pp.

Tortora, G.J., Funke, B.R., Case C.L. 2008. Microbiology an Introduction, 10th ed. Pearson Education.
 Willey, J. M., Sherwood, L., Woolverton, C. J., and Prescott, L. M. (2008). Prescott, Harley, and Klein's microbiology. New York: McGraw-Hill Higher Education.

Pedagogy: Written assignment/ Presentation Project/ Term papers/ Seminar

Formative Assessment: 40		
Assessment Occasion/type	Weightage in marks	
IA (2)	20	
Assignment/ Visits	10	
Seminars/Group Discussions	10	
Total	40	

III SEMESTER B.SC MICROBIOLOGY

SYLLABUS

NEP BATCH

Affiliated to Bengaluru City University Re-accredited by NAAC with "A" grade, Recognised by UGC under Section 2(f) and 12(b) of the UGC Act 1956 Conferred the Status of 'College with Potential for Excellence' by UGC

Program Outcomes

- PO1.Knowledge and understanding of concepts of microbiology and its application in pharma, food, agriculture, beverages, nutraceutical industries.
- PO2.Understand the distribution, morphology and physiology of microorganisms and demonstrate the skills in aseptic handling of microbes including isolation, identification and maintenance; Understanding biochemical and physiological aspects of microbes
- PO3. Competent to apply the knowledge gained for conserving the environment and resolving the environmental related issues. Thorough knowledge and application of good laboratory and good manufacturing practices in microbial quality control.
- PO4. Learning and practicing professional skills in handling microbes and contaminants in laboratories and production sectors.

Exploring the microbial world and analyzing the specific benefits and challenges.

SI. no	Title of paper	Paper code	Percentage of changes
1.	Microbial Diversity (Theory)	MIC-301T	5 %
2.	Microbial Diversity (Practical)	MIC-301P	10 %
3.	Microbial Enzymology and Metabolism (Theory)	MIC-401T	-
4.	Microbial Enzymology and Metabolism (Practical)	MIC-401P	-

Percentage of changes

Affiliated to Bengaluru City University Re-accredited by NAAC with "A" grade, Recognised by UGC under Section 2(f) and 12(b) of the UGC Act 1956 Conferred the Status of 'College with Potential for Excellence' by UGC

Program Name	B.Sc Microbio	logy		Semester	Thire	d Sem
Course Title	Microbial Dive	ersity				
Course No.	MIC-301T	DSC -	-3T	No. of Theory Credits 4		4
Contact hours	56hrs			Duration of ESA/Exam 2.5 Hours		Hours
Formative Asse	ssment Marks	40	S	Summative Assessment Marks 60		60

Course Outcomes(COs):

- 1. Acquire knowledge about microbes and their diversity
- 2. Study the characteristics, classification and economic importance of Prokaryotic and Eukaryotic microorganisms.
- 3. Gain knowledge about viruses and their diversity

Content	Hrs
Unit–I	08 Hrs
Biodiversity and Microbial Diversity	
Concept, definition and levels of biodiversity; Biosystematics – Major classification	
systems. Various parameters for Numerical and Chemotaxonomy. Study and	
measures of microbial diversity; Conservation and Economic values of microbial	
diversity. An overview of Bergey's Manual of Systematic Bacteriology.	
Unit-II	
Diversity of Prokaryotic Microorganisms	16 Hrs
Distribution, factors regulating distribution.	
General characteristics; Classification; habitat, structure, Cultural characteristics,	
Reproduction and Economic importance of:	
Archaea: Thermus aquaticus, Methanogens	
Bacteria: Escherichia coli, Bacillus subtilis,	
Cyanobacteria: Spirulina, Anabaena, Nostoc	
Actinomycetes: Streptomyces, Nocardia, Frankia	
Rickettsiae: Rickettsia rickettsi	
Chlamydiae: Chlamydia trachomatis	
Spirochaetes: Treponema pallidum	
Mycoplasma: Ureaplasma, Acholeplasma	

Unit-III	
Diversity of Eukaryotic Microorganisms	16 Hrs
General characters; Classification- Economic importance	
Fungi: Ainsworth classification-detailed study up to the level of classes, Salient features	
and reproduction. Type study: Rhizopus, Saccharomyces, Aspergillus, Agaricus,	
Fusarium	
Algae: Occurrence, distribution, and symbiotic association- Lichen; thallus organization	
and types. Type study: Chlorella, Diatom, Gracilaria, Spirulina	
Protozoa: Classification up to the level of classes. Type study: Amoeba, Euglena,	
Paramoecium, Plasmodium, Trypanosoma	
Unit-IV	16 Hrs
Diversity of Viruses	+
General structure, Isolation, purification, assay and culturing of viruses. Principles of	
Viral Taxonomy-Baltimore and ICTV and the recent trends.	
Capsid symmetry-Icosahedral, helical, complex	
Animal: HIV, Corona, Ortho and Paramyxovirus, Oncogenic virus	
Plants: TMV, Cauliflower mosaic virus	
Microbial: T4, lambda, cyano and mycophages.	
Sub viral particles; Viroids and Prions.	

mative Assessment = 60 Marks			
Formative Assessment Occasion /type	Weightage in Marks		
Attendance	10		
Seminar and Assignment	10		
Debates and Quiz	10		
Test	10		
Total	60 marks + 40 marks= 100 marks		

	I	III sem Microbic	logy practical		
Course Title	Microbial D	Diversity(Practical)	Pract	cal Credits	2
Course No.	MIC-301P	DS	C-4P Cor	itact hours	26 Hrs
Content					
 Isolation, a Isolation, a Isolation, a Study of m Isolation o Isolation o Demonstration Type study Type study Type study 	and identification and identification norphology of bac of bacteriophages ation of viral inocu y: Cyanobacteria, y: Algae: <i>Chlorella</i> , y: Fungi: <i>Rhizopus</i> ,	from sewage wate ulation in chick em Nostoc, Spirulina a , Diatoms, Gracila	, vibrio and spiral (slides er and plaque analysis Ibryo		
11. Type study Practical assessn		eba, Euglena, Plasi	nodium, Paramoecium,		(slides)
		eba, Euglena, Plasi Assessm	nodium, Paramoecium,		(slides)
		Assessm	nodium, Paramoecium,	Trypanosoma	
	nent Formative assess Occasion	Assessm	nodium, Paramoecium,	Trypanosoma	
Practical assessment C	nent Formative assess Occasion	Assessm sment Weightage in	nodium, Paramoecium, nent Summative Assessm	Trypanosoma	
Practical assessn Assessment C	nent Formative assess Occasion	Assessm sment Weightage in Marks	nodium, Paramoecium, nent Summative Assessm	Trypanosoma	
Practical assessm Assessment C /type Record	nent Formative assess Occasion	Assessm sment Weightage in Marks 5	nodium, Paramoecium, nent Summative Assessm	Trypanosoma	
Practical assessm Assessment C /type Record Test	nent Formative assess Dccasion d nce	Assessm sment Weightage in Marks 5 10	nodium, Paramoecium, nent Summative Assessm Practical Exam	Ient Total M	

References

- 1. Black, J.G. 2002. Microbiology-Principles and Explorations. John Wiley and Sons, Inc. New York
- 2. Brock,T.D. and Madigan,M.T.1988.Biology of Microorganisms, V Edition. Prentice Hall. New Jersey
- 3. Dimmock,N.J.,Easton,A.J.,andLeppard,K.N.2001.Introduction to Modern Virology. 5th edition. Blackwell Publishing, USA
- 4. Prescott, Harley, Klein's Microbiology, J.M.Willey, L.M.Sherwood, C.J.Woolverton, 2008. 7th International edition ,Mc GrawHill
- 5. Vashishta,B.R, SinhaA.K and Singh V.P.2005. Botany–Fungi, S.Chand and Company Limited, New Delhi
- 6. Kotpal, R.L Protozoa 5th Edition2008. Rastogi Publications, Meerut, New Delhi

- 7. Madigan, M.T.Martinko, J.M,Dunlap, P.V.Clark,D.P.2009. Brock Biology of Microorganisms,12th edition, Pearson Benjamin Cummings
- 8. G.J.Tortora, B.R.Funke, C.L. 2008. Microbiology–AnIntroduction, Case, 10thedition., Pearson Education
- 9. Pelczar Jr. Chan, Krieg, Microbiology Concepts and Applications, International edition, McGrawHill
- 10. Alexopoulos, C.J., Mims, C.W. and Blackwell, M.2002. Introductory Mycology. John Wiley and Sons (Asia) Pvt. Ltd. Singapore. 869 pp, 4th edition.
- 11. Dubey R.C.,and Maheshwari,D.K. 1999. A Textbook of Microbiology, 1stedition, S.Chand &Company Ltd, New Delhi

Affiliated to Bengaluru City University Re-accredited by NAAC with "A" grade, Recognised by UGC under Section 2(f) and 12(b) of the UGC Act 1956 Conferred the Status of 'College with Potential for Excellence' by UGC

MICROBIOLOGY OPEN ELECTIVE III SEMESTER

Program Name	B.Sc Microbiology			Semester	Third So	em
Course Title	Microbial Entr	epreneurship				
Course Code	MIC-OEC-301	<u>OE-3</u>		o. of Theory redits	3	
Contact hours	Lecture		_	ration of SA/Exam	21	Hours
	Practical					
Formative Assessment Marks		40		Summative Assessment Marks		60

Course Outcomes(COs):	
1. Demonstrate entrepreneurial skills	
2. Acquire knowledge on Industrial Entrepreneurship	
3. Acquire knowledge on Healthcare Entrepreneurship	
Content	42 Hrs
Unit–I	14 Hrs
General Entrepreneurship	
Entrepreneurship and microbial entrepreneurship- Introduction and scope, Business	
development, product marketing, HRD, Biosafety and Bioethics, IPR and patenting,	
Government organization/Institutions/ schemes, Opportunities and challenges.	
Unit-II	14 Hrs
Industrial Entrepreneurship	
Microbiological Industries – Types, processes and products, Dairy products, Fermented	
foods, Bakery and Confectionery, Alcoholic products and Beverages, Enzymes -	
Industrial production and applications. Biofertilizers and Biopesticides, SCP and SCO.	
Neutraceutical products.	
Unit-III	14 Hrs

Healthcare Entrepreneurship

Production and applications: Sanitizers, Antiseptic solutions, Polyphenols (Flavonoids), Alkaloids, Cosmetics, Biopigments and Bioplastics, Vaccines, Diagnostic tools and kits.

Summative Assessment = 60 Marks				
Formative Assessment Occasion/type	Weightage in Marks			
Attendance	10			
Seminar	10			
Debates and Quiz	10			
Test	10			
Total	60 marks + 40 marks= 100 marks			

References

- 1. Srilakshmi, B. (2007). Dietetics. New Age International publishers. New Delhi
- 2. Srilakshmi, B. (2002). Nutrition Science. New Age International publishers. New Delhi
- 3. Swaminathan, M.(2002). Advanced textbook on food and Nutrition. Volume I. Bappco
- 4. Gopalan, C. RamaSastry, B.V. and Balasubramanian, S.C (2009). Nutritive value of Indian Indian Foods. NIN. ICMR. Hyderabad
- MudambiSRandRajagopalMV.2008.FundamentalsofFoods, Nutrition & diet therapy by New Age International Publishers, New Delhi. 5th edition

Affiliated to Bengaluru City University Re-accredited by NAAC with "A" grade, Recognised by UGC under Section 2(f) and 12(b) of the UGC Act 1956 Conferred the Status of 'College with Potential for Excellence' by UGC

IV SEMESTER B.SC MICROBIOLOGY

SYLLABUS

Program Name	B.Sc Microbio	ology			Semester	Fourth Se	em	
Course Title	Microbial Enz	1icrobial Enzymology and Metabolism						
Course No.	MIC-401T DSC -4T No. of Theory				4			
				Cre	edits			
Contact hours		56 hi	ſS	Du	ration of	2 Ho	ours	
				ESA	A/Exam			
Formative Assessment Marks			40	Sun	nmative Assessmer	nt Marks	60	

Course Outcomes(COs):

- 1. Differentiating concepts of chemoheterotrophic metabolism and Chemolithotrophic metabolism.
- 2. Describing the enzyme kinetics, enzyme activity and regulation.
- 3. Differentiating concepts of aerobic and anaerobic respiration and how these are manifested in the form of different metabolic pathways in microorganisms

Content	56 Hrs
Unit–I Metabolism of Carbohydrates	14 Hrs
Concept of aerobic respiration, anaerobic respiration and fermentation.	
Carbohydrate metabolism pathways i.e. ED, Pentose phosphate pathway,	
Phosphoketolase pathway. TCA cycle.	
Fermentation - Fermentation balance, concept of linear and branched fermentation	
pathways. Fermentation pathways: Alcohol fermentation and Pasteur effect;	
Butyric acid and Butanol-Acetone Fermentation, Mixed acid and 2,3-butanediol	
fermentation, Propionic acid Fermentation, acetate fermentation.	
Chemolithotrophic metabolism: Chemolithotrophy -Oxidation of Hydrogen, Sulphur,	
Iron and Nitrogen.	
Anaerobic respiration with special reference to Dissimilatory nitrate reduction and	
sulphate reduction.	
Unit-II Metabolism of amino acids, nucleotides and lipids	14 Hrs
Nitrogen Metabolism: Introduction to biological Nitrogen fixation, Ammonia	
assimilation. Assimilatory nitrate reduction, Dissimilatory nitrate	
reduction, denitrification	
Biosynthesis of ribonucleotides and deoxyribonucleotides: The denovo pathway	
of purines and pyrimidines, recycling by salvage pathway	
Amino acid degradation and biosynthesis: Deamination and decarboxylation-	
An overview of amino acids biosynthesis	
Lipid degradation and biosynthesis : β-oxidation of palmitic acid; Biosynthesis	
of palmitic acid.	
Metabolism of one carbon compounds: Acetogens: Autotrophic pathway of	
acetate synthesis	
acetate synthesis Metabolism of two-carbon compounds: Acetate: Acetic acid bacteria: Ethanol	

Oxalate as carbon and energy source	
Unit-III Basics of Enzymes	14 Hrs
Introduction to enzymes-Definition, enzyme unit, specific activity and turnover	
number, exo / endo-enzymes, constitutive/ induced enzymes, isozymes.	
Monomeric, Oligomeric and Multimeric enzymes.	
Multi-enzyme complex: pyruvate dehydrogenase; isozyme: lactate dehydrogenase.	
Ribozymes, abzymes	
Structure of enzyme: Apoenzyme and cofactors, prosthetic group-TPP,	
coenzyme, NAD, metal cofactors.	
Classification of enzymes, Mechanism of action of enzymes: active site,	
transition state complex and activation energy. Lock and key hypothesis and	
Induced Fit hypothesis.	
Multi-substrate reactions-Ordered, Random and Ping-Pong.	
Unit-IV Enzyme Kinetics and Regulation	14 Hrs
Enzyme Kinetics: Kinetics of one substrate reactions. i. Equilibrium assumptions ii.	
Steady state Assumptions iii. Line weaver-Burk, Hanes-Woolf, Eadie-Hofstee equations	
and plots.	
Kinetics of enzyme inhibition. Competitive, non-competitive and uncompetitive	
inhibition. Effect of changes in pH and temperature on enzyme catalyzed reaction.	
Kinetics of two substrate reactions. Pre-steady state kinetics. Kinetics of immobilized	
enzymes	
Enzyme regulation: Allosteric enzyme - general properties, Hill equation, Koshland	
Nemethy and Filmer model, Monod Wyman and Changeux model. Covalent	
modification by various mechanisms. Regulation by proteolytic cleavage - blood	
coagulation cascade. Regulation of multi-enzyme complex- Pyruvate dehydrogenase.	
Feedback inhibition.	

Summative Assessment = 60 Marks					
Formative Assessment Occasion/type	Weightage in Marks				
Attendance	10				
Seminar and Assignment	10				
Debates and Quiz	10				
Test	10				
Total	60 marks + 40 marks= 100 marks				

Course Title		Microbial Enzymology and Metabolism(Practical)		Practical Credits	2	
Cours	se No.	MIC-401P	DSC-4P	Contact hours	26 hours	
			Content			
1.	Estima	tion of RNA (Orcinol	method)			
2.	Estima	tion of DNA-DPA me	thod			
3.	Estima	tion of lactose and la	actic acid from milk			
4.	Produc	tion and estimation	of amylase enzyme ar	nd its activity		
5.	Estima	tion of total sugars b	y the phenol-sulphuri	ic acid method		
6.	Identifi	ication of fatty acids	and other lipids by TL	-C		
7.	Enzyme	e Immobilization by S	Sodium alginate meth	od		
8.		•		a. Temperature b. pH c. s	ubstrate	
	concen	itration d. Enzyme co	oncentration			
9.	Determ	ination of Km and V	max of amylase (Line-	weaver- Burke plot; Mich	naelis-Menton	
	equatio	on)				
equation) 10. Demonstration of alcoholic fermentation						

Practical assessment

Assessment				
Formative asse	ormative assessment Summative Assessment		Tatal	
Assessment Occasion /type	Weightage in Marks	Practical Exam	Total Marks	
Record	5			
Test	10			
Attendance	5	25	50	
Performance	5			
Total	25	25		

References

- 1. Philipp. G. Manual of Methods for General Bacteriology.
- 2. David T. Plummer. An Introduction to Practical Biochemistry
- 3. Wood W. B. Wilson J.H., Benbow R.M. and Hood L.E. 1981. Biochemistry- A Problem Approach, 2nd edition. The Benjamin/ Cummings Pub.co
- 4. Segel I.R., 2nd edition., 2004, Biochemical calculations, John Wiley and Sons
- 5. Irwin H. Segel, 2nd Edition, Biochemical Calculations, John Wiley & Sons

Affiliated to Bengaluru City University Re-accredited by NAAC with "A" grade, Recognised by UGC under Section 2(f) and 12(b) of the UGC Act 1956 Conferred the Status of 'College with Potential for Excellence' by UGC

MICROBIOLOGY OPEN ELCTIVE IV SEMESTER

Program Name	B.Sc Microbio	B.Sc Microbiology			Fourth Sem			
Course Title	Human Micro	uman Microbiome						
Course Code	MIC-OEC-401	OE-4T	3					
Contract hours	Lecture		Dura	ition of ESA/Exam	2.5 Hours			
Contact hours	Practical							
Formative Assessment Marks		40	Summative Assessment Marks		arks	60		

Course Outcomes(COs):

- 1. Articulate a deeper understanding on biological complexities of human microbiome.
- 2. Understand broader goals of biological anthropology.
- 3. Compare and contrast the micro biome of different human body sites and impact human health promotion

Content	42Hrs
Unit–I	14 Hrs
INTRODUCTION TO MICROBIOME	
Normal human microbiota and their role in health-gut microflora, skin microflora,	
microflora of reproductive and excretory system. Symbiotic and parasitic	
association.	
Unit-II	14 Hrs
MICROBIOMES AND HUMAN HEALTH	
Pre- and post-natal Microbiome, Nutritional modulation of the gut	
microbiomefor metabolic health-role of gut microbiomes inhuman obesity,	
human type2 diabetes.	
Influence of microbiomes in aging.	
Probiotics-Criteria for probiotics, Development of Probiotics for animal and	
human use; Pre and synbiotic. Functional foods-health claims and benefits,	
Development of functional foods.	
Unit-III	14 Hrs
CULTURING OF MICROBES FROM MICROBIOMES	
Culturing of organisms of interest from the microbiome: bacterial, fungal, and	
yeast.	
Study of the microbiome genome	

Microbiomes and diseases: Microbiome and disease risks: The gut microbiome and host immunity, bacteriocins and other antibacterials. Human microbiome research in nutrition

Summative assessment = 40 marks theory paper, End semester Exam duration of exam 2.5 hours

Formative Assessment Occasion/type	Weightage in Marks
Assignment	10
Seminar	10
Case studies	10
Test	10
Total	40marks

Affiliated to Bengaluru City University Re-accredited by NAAC with "A" grade, Recognised by UGC under Section 2(f) and 12(b) of the UGC Act 1956 Conferred the Status of 'College with Potential for Excellence' by UGC

DEPARTMENT OF MICROBIOLOGÝ V SEM SYLLABUS (NEP BATCH) 2023-24

V SEMESTER MICROBIOLOGY PAPER-501T

Program Name	BSc in MICROBIO	LOGY	Semester V	/						
Course Title	MICROBIAL GENETICS AND MOLECULAR BIOLOGY (Theory)									
Course Code:	MIC-501T		No. of Credits	04						
Contact hours	60 Hours(4 Hour	s per week)	Duration of SEA/Exam	2 ^{1/2} hours						
Formative Assessment Marks 40		Summative Assessment Mar	ks 60							

Course Pre-requisite(s) :

Course Outcomes (COs): After the successful completion of the course, the student will be able to:

- CO1. Understand concepts involved in replication, transcription, translation, regulation of geneexpression in bacteria and Eukaryotes.
- CO2. Differentiate the process of replication, transcription, translation, regulation of gene expression inbacteria and Eukaryotes.
- CO3. Compare and contrast housekeeping, constitutive, inducible and repressible genes

Contonto

Contents	
Unit 1 DNA and replication	15 Hrs
Types of genes and their organization in viruses, prokaryotes and eukaryotes	
Historical developments of DNA as a genetic material; Griffith experiment of	
Transformation, Proof that genetic information stored in DNA, Enzymatic approach to	
prove DNA mediates transformation by Avery, MacLeod and McCarty, Hershey and	
Chase experiment to prove DNA carries the genetic information in T2 bacteriophage.	
RNA stores the genetic information in some viruses, viroids and prions. Structure of	
Watson Crick model of DNA, types of DNA; Plasmid DNA	
DNA replication in Prokaryotes: Semi, Conservative methods, Rolling circle model,	
Origin of replication, Primers and Templates, Replication fork, Unidirectional and	
Bidirectional (Theta model)-DNA repair mechanisms	
Unit 2 Genetics of major microbial groups	15 Hrs
Genetics of Bacteria: Structure and life cycle of bacteria E. coli Mutant genes in bacteria	
Genetics of VirusesStructure and life cycle of Bacteriophage T4 and Lambda, lytic and	
lysogenic cycle of bacteriophage; episomes	
Genetics of Fungi: life cycle of Yeast and Neurospora, Tetrad analysis	
Mechanism of genetic exchange in bacteria	
<u>Bacterial Conjugation</u> : Properties of the F plasmid, $F^+ \times F^-$ conjugation, sexduction F' $\times F^-$	
conjugation, Hfr x F ⁻ conjugation	
Bacterial Transformation: Types of transformation mechanisms found in prokaryotes,	
Natural and artificial methods of transformation.	

Transductions, U.T., he are aviagent. Concerding device indication device indication	
Transduction: U-Tube experiment; Generalized and specialized transduction	
Mutations: mutagens; Types of mutation (spontaneous and induced)	
UNIT 3 Transcription	
RNA structure; difference between DNA and RNA; Types of RNA, structure and their	15 Hrs
functions (mRNA, rRNA, tRNA)	13 1113
Prokaryotic transcription: Transcription unit; Transcription bubble, Stages of	
transcription, Bacterial RNA polymerase - structure and mechanism, recognition of	
promoters and DNA melting, abortive initiation. Elongation, Termination, anti-	
termination. mRNA formation and function	
RNA types, RNA splicing and Processing: capping, pre-mRNA splicing, spliceosome,	
autocatalytic splicing, alternative splicing, polyadenylation, primary transcript; tRNA	
splicing and maturation, production of rRNA, Catalytic RNAs - auto splicing, ribozymes,	
ribonuclease P, viroids and virusoids, RNA editing	
Eukaryotic Transcription: Eukaryotic RNA polymerases - RNA polymerase I, II, III.	
Mechanism of RNA polymerase in detail. Promoters, Transcription factors, basal	
apparatus, promoter clearance, elongation. Enhancers, silencers, termination.	
UNIT 4 Translation	
Genetic code, charging of tRNA, differences between initiator tRNA and elongator tRNA,	
ribosome structure. Accuracy of translation. Stages of translation. Role of IFs in initiation	
of bacterial translation, Formation of initiation complex. Initiation of Eukaryotic	15hrs
translation – Mechanism; Role of Translation factors (IFs, EFs, TFs). Elongation of	
polypeptide, peptide bond formation, peptidyl transferase activity, translocation,	
Termination.	
Regulation of translation. Post translational modifications of proteins.	

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

Course Outcomes (COs) / Program Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12
Understand concepts involved in replication, transcription,translation, regulation of gene expression in bacteria and eukaryotes		٧	٧		V							V
Differentiate the process of replication, transcription, translation, regulation of gene expression in bacteria and eukaryotes		V	V		V							V
Compare and contrast housekeeping, constitutive, inducible and repressible genes		V	V		V							٧

Pedagogy: Lectures, Seminars, Industry/Institute Visits, Debates, Quiz, Project and Assignments

Formative Assessment for Theory					
Assessment Occasion/ type	Marks				
Attendance	10				
Seminar	10				
Debate/Quiz/Assignment	10				
Class test	10				
Total	40 Marks				
Formative Assessment as per guidelines are compulsory					

V SEMESTER MICROBIOLOGY PAPER-501P

о т и								
Course Title	MICROBIAL GE (Practical)	NETICS AND MOLECULA	AR BIOLOGY	iY Practical Credits 02				
Course Code	urse Code MIC- 501P Contact Hours 4 Hou							
Formative As	sessment	Sum	mative Assessment	25 Marks				
Practical Content								
1. Preparatio	n of Buffers – TE	, TAE, Lysis Buffer						
2. Extraction	and Isolation of	Bacterial DNA						
3. Extraction	and Isolation of	Fungal DNA						
4. Quantificat	tion of DNA by D	PA method						
5. Determina	tion of Melting 1	emperature (Tm) of DNA	Ą					
6. Isolation a	nd Characterizat	ion of petite mutant in y	east					
7. Isolation of	f Antibiotic Resis	tant Mutant by Gradient	t Plate Meth	od				
8. Determina	tion of phage co	ncentration by Plaque As	ssay / Phage	titration				
9. Induction o	of Mutation in ba	acteria by Chemical /Rad	liation (UV) r	methods				
10.Induction	of Mutation in y	east by Chemical / Radia	ition (UV) m	ethods				
11.Selection	of Auxotrophic r	nutants by Replica Platin	g Method					
12.Bacterial (Conjugation, Trai	nsformation Transduction	n and semi-o	conservative mode o	f DNA replication			
(charts)								
	Ped	agogy: Experiential learn	ning, Probler	n solving, Project				
		Formative Assessn	<u> </u>					
	Asses	sment Occasion/ type		Marks				
	Test 15							

Attendance and Performance	10
Total	25 Marks

Refer	ences
1	<i>Karp's Cell and Molecular Biology</i> by Gerald Karp, Janet Iwasa, Wallace Marshall. Ninth Edition. 2020
2	Lewin's Genes XII. Jocelyn E Krebs, Elliott S Goldstein, Stephen T Kilpatrick. Jones and Bartlett Learning.2017
3	James D. Watson, Tania A. Baker, Stephen P. Bell, Alexander Gann, Michael Levine, Richard Losick. Molecular Biology of the Gene, 7th edition. 2017
4	Freifelder's Essentials of MOLECULAR BIOLOGY. George M Malacinski, 4 th ed. 2015
5	Freifelder D (2012). Molecular Biology, 5th edition. Narosa Publishing House, India
6	Berg JM, Tymoczko JL, Gatto GJ and Stryer L (2015) Biochemistry, 8th Edition, WH Freeman & Co., New York
7	Alberts Bruce , Johnson A , Lewis J , Raff M , Roberts K, Walter P (2014) Molecular Biology of the Cell. 5th Edition, Taylor and Francis. New York, USA.
8	Tropp BE (2012) Molecular Biology: Genes to Proteins. 4rd Edition, Jones & Bartlett, Learning, Burlington, MA
9	Allison A. Elizabeth (2012) Fundamental Molecular Biology, 2nd Edition. J Willey and Sons, Hoboken,New Jersey
10	Aranda PS, LaJoie DM, Jorcyk C L (2012). Bleach Gel: A Simple Agarose Gel for Analyzing RNA Quality. Electrophoresis. 33(2): 366–369. Doi: 10.1002/elps .201100335.
11	Bloch KD; Grossmann B (1995). Digestion of DNA with Restriction Endonucleases. https://doi.org/10.1002/0471142727.mb0301s31
12	Chomczynski P, Sacchi N (2006). "The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on". Nat Protoc. 1 (2): 581–5.doi:10.1038/nprot.2006.83.
13	Elkins K M (2013). DNA Extraction Forensic DNA Biology.
14	Frederick M. Ausubel, Roger Brent, Robert E. Kingston, David D. Moore, J.G. Seidman, John A. Smith, Kevin Struhl (2003). Current Protocols in Molecular Biology. John Wiley & Sons, New York, United States.
15	Johnson M (2019). RNA extraction, Synatom Research, Princeton, New Jersey, United States. DOI//dx.doi.org/10.13070/mm.en.2.201.
16	Lewis M. Agarose gel electrophoresis (basic method). Department of Pathology, University of Liverpool. <u>http://divhpl.us/~bryan/irc/protocol-online/protocolcache/agarogel.html</u>
17	Randall DR. (2009). Molecular Biology Laboratory manual.
18	Sambrook JF, Russell DW (2001). Molecular Cloning: a Laboratory Manual. 3rd edition. Cold Spring Harbor, N.Y. Cold Spring Harbor Laboratory Press
19	Struhl K, Seidman J G, Moore D D, Kingston RE, Brent R, Ausubel FM, Smith JA. (2002). hort Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology. John Wiley & Sons Inc., New York, United States
20	Surzycki S (2000). Basic techniques in molecular biology. Springer.
21	Yılmaz M, Ozic C, Gok İ (2012). Principles of Nucleic Acid Separation by Agarose Gel Electrophoresis. Gel Electrophoresis - Principles and Basics, Dr. Magdeldin S (Ed.), ISBN: 978- 953-51-0458-2, InTech. http://www.intechopen. com/books/gel-electrophoresis-principles- And basics

V SEMESTER MICROBIOLOGY PAPER-MIC-502T

Program Name	BSc in MICROBIO	LOGY	Semester V	
Course Title	GENETIC ENGINE	ERING (Theor	y)	
Course Code:	MIC-502T		No. of Credits	04
Contact hours	60 Hours(4 Hours	s per week)	Duration of SEA/Exam	2 ^{1/2} hours
Formative Assessment Marks 40		Summative Assessment Mark	cs 60	

Course Pre-requisite(s) :

Course Outcomes (COs) : After the successful completion of the course, the student will be able to:

CO1 Outline regulatory mechanisms in bacteria to control cellular processes

CO2 Understand the fundamental molecular principles of genetic engineering

CO3 Understand the applications of genetic engineering

CO4 Comprehend the principle and application of analytical techniques and understand the genetic switch in bacteriophages.

UNIT 1 Regulation and Control of gene expression in prokaryotes Regulatory mechanisms in bacteria. Positive and negative transcriptional control in bacteria.

15Hrs Positive and negative transcriptional control in bacteria. Operon concept, polycistronic mRNA. *lac* operon - negative inducible, allolactose, mechanism of binding of repressor to operator. Catabolite repression of *lac* operon. Regulation by lac repressor and CAP. *trp* operon-- regulation - repressor control & attenuator control. Regulation of lytic & lysogenic life cycle in λ bacteriophage

Control of lytic cycle by regulatory proteins - *cro* gene, *N* gene, lambda repressor - structure, DNA binding mechanism. Events for switching from lytic to lysogenic cycle. Maintenance of lysogeny.

Control of gene expression in eukaryotes

Regulation through modification of gene structure- DNase I hypersensitivity, histone modifications, chromatin remodeling, DNA methylation. Regulation through transcriptional activators, Co-activators and repressors, enhancers and insulators. Regulation through RNA processing and degradation. Regulation through RNA interference

Unit 2: Introduction to Microbial Genetic Engineering			
Historical prospectives: Definition of genetic engineering, milestones in genetic			
engineering.			
Tools in Microbial Genetic Engineering: Restriction modification systems- Types, Mode of			
action, nomenclature, applications of restriction enzymes in genetic engineering. DNA			
modifying enzymes and their applications: DNA polymerases, methylases, Terminal			

deoxynucleotidyl transferase, kinases and phosphatases and DNA ligases.			
Gene Cloning Vectors: Definition and Properties. Characteristics of cloning vectors. Plasmid			
vectors: PBR and pUC series. Bacteriophage lambda, cosmids, plant vectors (Ti plasmid of			
Agrobacterium) <u>animal factors</u> (SV40)			

Unit 3 Cloning host- Cloning in Escherichia coli, cloning in Saccharomyces cerevisiae, cloning in15 HrsGRAS microorganism. GeneLibrary: Construction of cDNA library, genomic library.15 Hrs

15 Hrs

- **Steps of genetic engineering:** Isolation and Detection of DNA: Isolation of DNA, restriction digestion and ligation of DNA; Use of linkers and adaptors.
- **DNA transfer methods:** Microinjection, Biolistic, Electroporation, Calcium chloride and Liposome mediated DNA transfer. Screening and selection of recombinants: DNA hybridization, blue-white selection, antibiotic selection, colony and plaque hybridization

Unit 4: Techniques and applications in Microbial Genetic Engineering

Agarose gel electrophoresis, Blotting techniques- Southern blotting, Northern blotting, dot blot, DNA microarray analysis, Western blotting. DNA sequencing- Sanger's method. PCR techniques and applications, Chromatography (PC, TLC), Spectroscopy (UV – vis spectroscopy)

Recombinant microorganisms: Application of recombinant microorganisms in basic research, Medicine: Gene therapy. Agriculture: Disease resistant crops, Nitrogen Fixation. Industry: Vaccines. Environment: Genes for bioremediation

- Biological, ethical and social issues of genetic engineering and IPR.
- Prospects, safeguards ofgenetic engineering.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

				Pro	grai	m Ou	itco	mes	(POs	5)		
Course Outcomes (COs) / Program Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12
Outline regulatory mechanisms in bacteria to control cellular processes		٧		٧			٧					
Understand the fundamental molecular principles of genetic engineering		٧					٧				٧	
Understand the applications of genetic engineering and comprehend the principle and application of analytical techniques		٧					٧					٧
Understand the genetic switch in bacteriophages.			٧		۷		٧	٧				

Pedagogy: Lectures, Seminars, Industry/Institute Visits, Debates, Quiz, Project and Assignments

Formative Assessment for Theory					
Assessment Occasion/ type Marks					
Attendance	10				
Seminar	10				
Debate/Quiz/Assignment	10				
Class test	10				
Total	40 Marks				
Formative Assessment as per guidelines are compulsory					

V SEMESTER MICROBIOLOGY PAPER-502P

Cours	e Title	GENETIC ENGINEERING (Practical) Practical Credits				02	
Cour	se Code	MIC	-502P			Contact Hours	4 Hours/ week
Form	Formative Assessment 25 Marks Summative Assessment				25 Marks		
			Practical Co	ontent			
1	Study and W	/orkin	g of Micropipettes				
2	Extraction a	nd visı	ualization of Plasmid from	bacterial	cultu	re	
3	Extraction o	f RNA	from yeast cells				
4	Resolution a	nd Vis	ualization of Protein by SD	DS-PAGE n	netho	bd	
5	Separation of enzymes by Paper chromatography						
6	Measurement of β -galactosidase activity in Bacteria (E coli)						
7	Restriction enzyme digestion of DNA						
8	Ligation of DNA						
9	Demonstrat	ion of	amplification of DNA by P	CR metho	d		
10	Demonstration of Southern blotting						
11	Problems related to genetic engineering						
12	Bacterial tra	nsforr	nation by CaCl ₂ method				
13	Study of Vectors: pBR, pUC series, Bacteriophage, cosmids, phagemids, Gene cloning						

Pedagogy: Experiential learning, Problem solving, Project

Formative Assessment for Practical					
Assessment Occasion/ type	Marks				
Test	15				
Attendance and Performance	10				
Total 25 Marks					
Formative Assessment as per guidelines are compulsory					

REFERENCES:

1.	Microbial Genetics by Maloy ET. Al. 1994. Jones and Bartlett Publishers.
2.	Molecular Genetics of Bacteria by J. W. Dale. 1994. John Wiley and Sons.
3.	Modern Microbial Genetics. 1991 by Streips and Yasbin. Niley Ltd.
4.	Molecular Biology of the Gene 4th Edition by J.D. Watson, N.H. Hoppkins, J.W. Roberts, J.A. Steitz and A.M. Weiner. 1987, The Benjamin / Cummings Publications Co. Inc. California.

5.	Gene VII by Lewin Oxford University Press. 2000.
6.	Bacterial and Bacteriophage Genetics. 4th Editions by Birge
7.	Microbial Genetics by Frefielder. 4th Edition.
8.	Organization of Prokayotic Genome. 1999 by Robert L.Charlebois, ASM Publications.
9.	Molecular Genetics of Bacteria, 1997 by Larry, Snyder and Wendy, Champness, ASM
10.	Brown TA. (2010). Gene Cloning and DNA Analysis. 6th edition. Blackwell Publishing, Oxford, U.K.
11.	Clark DP and Pazdernik NJ. (2009). Biotechnology: Applying the Genetic Revolution. Elsevier Academic Press, USA
12.	Krebs J, Goldstein E, Kilpatrick S (2013). Lewin's Essential Genes, 3rd Ed., Jones and Bartlett Learning
13.	Primrose SB and Twyman RM. (2008). Genomics: Applications in human biology. Blackwell Publishing, Oxford, U.K.
14.	Russell PJ. (2009). i Genetics- A Molecular Approach. 3rd Ed, Benjamin Cummings
15.	Sambrook J and Russell D. (2001). Molecular Cloning-A Laboratory Manual. 3rd edition. Cold Spring Harbor Laboratory Press
16.	Watson JD, Baker TA, Bell SP et al. (2008) Molecular Biology of the Gene, 6th Ed., Benjamin Cummings Wiley
17.	JM, Sherwood LM and Woolverton CJ. (2008). Prescott, Harley and Klein's Microbiology. McGraw Hill Higher Education.

Maharani Lakshmi Ammanni College for Women Autonomous

Affiliated to Bengaluru City University Re-accredited by NAAC with "A" grade, Recognised by UGC under Section 2(f) and 12(b) of the UGC Act 1956 Conferred the Status of 'College with Potential for Excellence' by UGC

DEPARTMENT OF MICROBIOLOGY VI SEM SYLLABUS (NEP BATCH) 2023-24

10

VI SEMESTER MICROBIOLOGY PAPER-MIC-601T

Program Name	BSc in Microbiology			Semester	VI			
Course Title	IMMUNOLOG	MUNOLOGY AND MEDICAL MICROBIOLOGY (Theory)						
Course Code:	MIC 601T		No. o	f Credits	4			
Contact hours	urs 60 Hours(4 hours per week)		Durat	ion of SEA/Exam	2 ½ hours			
Formative Assessment Marks		40	Sumr	native Assessment Marks	60			

Course Pre-requisite(s):

Course Outcomes (COs): After the successful completion of the course, the student will be able to: CO1: To gain a preliminary understanding about various immune mechanisms.

CO2: To familiarize with Immunological techniques and sero diagnosis of infectious diseases CO3: To understand pathogenic bacterial infections, symptoms, diagnosis and treatment process.

CO4: To understand pathogenic viral infections, symptoms, diagnosis and To understand pathogenic protozoan infections, symptoms, diagnosis and treatment process treatment process

Contents	60 Hrs
UNIT-I Basics of Immunology	
Historical perspective of immunology; Immunity: Definition, Types (Innate and acquired)	15 hrs
Mechanism of Innate immunity.	
Cells and organs of immune system: Hematopoiesis, cytokines, properties and functions of B	
and T Lymphocytes, Natural killer (NK) cells, Granulocytes (Neutrophils, Eosinophils and	
Basophils), Monocytes and macrophages, Dendritic cells and Mast cells. Primary lymphoid	
organs; Bone marrow and Thymus. Secondary lymphoid organs; Spleen and Lymph nodes.	
Antigen: Immunogenicity and antigenicity, epitopes, haptens. Properties of antigen	
contribute to immunogenicity; Chemical nature (proteins, carbohydrates, lipids and nucleic	
acids), degree of foreignness, molecular weight, chemical composition and complexity,	
degradability. Adjuvants (alum, Freund's incomplete and complete) and their importance. B	
and T cell epitopes. Antigen presentation (Endocytic and cytosolic pathway)	
Antibody: Basic structure of antibody, light and heavy chain, variable and constant region,	
hinge region, Fab and Fc. Structure and functions of different types of antibodies (IgM, IgG,	
IgA, IgE, and IgD).	
Antigenic determinants on immunoglobulins: Isotype, allotype and idiotype. Monoclonal	
antibody production by hybridoma technology	

UNIT-II Immune response: AMI, CMI, MHC, Immunological memory, Immunological tolerance	15 Hrs
Principles and applications of antigen-antibody interactions: Definition of affinity and avidity.	
Immunoprecipitation; Radial (Mancini) and double (Ouchterlony) immunodiffusion. Antibody	
mediated effector functions: opsonization, complement activation and antibody dependent	
cell mediated cytotoxicity (ADCC).	
Agglutination reactions: Hemagglutination, Bacterial agglutination, passive agglutination, and	
agglutination inhibition. Enzyme linked immune-sorbent assay (ELISA): Direct, indirect, sandwich and competitive ELISA. Radioimmunoassay (RIA). Immunofluorescence.	
Complement system: Functions of complement components, complement activation by	
classical, alternative and lectin pathway to develop membrane attack complex (MAC).	
Complement mediated opsonization, complement fixation test.	
Hypersensitive reactions: Classification, Humoral Immunity mediated hypersensitivity; Type I	
(IgE), Type II (IgG and IgM-ADCC), Type III (Antigen-antibody complex), and Cell mediated hypersensitivity Type IV (DTH).	
Vaccines: Definition and types with suitable examples	
Brief introduction to Tumor Immunology, Transplant Immunology and autoimmune diseases	
UNIT-III Medical Microbiology	15 Hrs
Normal microflora of the human body and host pathogen interaction	
Normal microflora of the human body: Importance of normal microflora, normal microflora of	
skin, throat, gastrointestinal tract, urogenital tract	
Definitions - Infection, Invasion, Pathogen, Pathogenicity, Virulence, Toxigenicity, Carriers and	
their types, Opportunistic infections, Nosocomial infections. Transmission of infection,	
Pathophysiologic effects of LPS. Sample collection, transport and diagnosis.	
Clinical Microbiology: Medical Bacteriology	
The following diseases in detail with Symptoms, mode of transmission, prophylaxis and	
control of respiratory diseases: Tuberculosis, Scarlet fever	
Gastrointestinal Diseases: Cholera, Typhoid	
Neurological diseases: Tetanus	
STD: Gonorrhoeae	
UNIT-IV: Medical Virology, parasitology and Mycology	-
The following diseases in detail with Symptoms, mode of transmission, prophylaxis and control-	
Viral diseases: Polio, Herpes, Hepatitis, Rabies, AIDS, Influenza	
Protozoan diseases: Malaria, Kala-Azar, Amoebiasis	15
Fungal infections- Cutaneous mycoses: Tinea, Systemic mycoses: Histoplasmosis; Opportunistic	15 Hrs
mycoses: Candidiasis	
Antimicrobial agents: General characteristics and mode of action Antibacterial agents: Inhibitor	
of nucleic acid synthesis; Inhibitor of cell wall synthesis; Inhibitor of cell membrane function;	
Inhibitor of protein synthesis; Inhibitor of metabolism	
Antifungal agents: Mechanism of action of Amphotericin B, Griseofulvin Antiviral agents:	
Mechanism of action of Amantadine, Acyclovir, Azidothymidine. Antibiotic resistance, MDR,	
	1

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

Course Outcomes (COs) / Program Outcomes(POs)		Program Outcomes (POs)													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
To gain a preliminary understanding about various immune mechanisms.	٧					٧									
To familiarize with Immunological techniques and sero diagnosis of infectious diseases	٧		٧						٧						
To understand pathogenic bacterial infections, symptoms, diagnosis and treatment process.									v	٧					
To understand pathogenic viral infections, symptoms, diagnosis						٧						٧			
To understand pathogenic protozoan infections, symptoms, diagnosis and treatment process treatment process										٧					

Pedagogy: Lectures, Seminars, Industry/Institute Visits, Debates, Quiz, Project and Assignments

Formative Assessment for Theory				
Assessment Occasion/ type	Marks			
Attendance	10			
Seminar	10			
Debate/Quiz/Assignment	10			
Class test	10			
Total	40 Marks			
Formative Assessment as per	guidelines are compulsory			

VI SEMESTER MICROBIOLOGY PAPER-601P

Course Title	_	NOLOGY AND MEDICAL BIOLOGY (Practical)	Practical Credits	2
Course Code	MIC-60)1P	Contact Hours	4Hours/week
Formative Asse	essment	25 Marks	Summative Assessment	25 Marks

	Practical content
1.	Identification of human blood groups.
2.	Perform Differential Leukocyte Count of the given blood sample.
3.	Separate serum from the blood sample (demonstration).
4.	Ouchterlony method(ODD)
5.	Radial Immunodiffusion (RID)
6.	Perform DOT ELISA.
7.	VDRL test
8.	Widal test
9.	Study of composition and use of important differential media for identification of
	pathogenic bacteria: EMB Agar, MacConkey agar, Mannitol salt agar,
	Deoxycholate citrate agar, TCBS
10.	Study of bacterial flora of skin by swab method
11.	Perform antibacterial sensitivity by Kirby-Bauer method
12.	Study of pathogenic microbes: Clostridium, Streptococcus, Entamoeba, Plasmodium,
	Candida, Salmonella

Pedagogy: Experiential learning, Problem solving, Project

Formative Assessment for Practical						
Assessment Occasion/ type Marks						
Test	15					
Attendance and Performance	10					
Total 25 Marks						
Formative Assessment as per guidelines are compulsory						

REFE	RENCES
1	Ananthanarayan R and Paniker C.K.J (2009) Textbook of Microbiology, 8 th Edition,
	University Press, Publication.
2	Brooks G.F., Carroll K.C., Butel J.S., Morse S.A. and Mietzner, T.A. (2013) Jawetz,
	Melnick and Adelberg's Medical Microbiology. 26th edition. McGraw Hill Publication
3	Goering R., Dockrell H., Zuckerman M. and Wakelin D. (2007) Mims' Medical Microbiology.
	4th edition. Elsevier
4	Willey JM, Sherwood LM, and Woolverton CJ. (2013) Prescott, Harley and Klein's
	Microbiology.9th edition. McGraw Hill Higher Education
5	Madigan MT, Martinko JM, Dunlap PV and Clark DP. (2014). Brock Biology of
	Microorganisms.14thedition. Pearson International Edition
6	Abbas AK, Lichtman AH, Pillai S. (2007). Cellular and Molecular Immunology. 6th edition
	Saunders Publication, Philadelphia.
7	Delves P, Martin S, Burton D, Roitt IM. (2006). Roitt's Essential Immunology.11th edition
	Wiley-Blackwell Scientific Publication, Oxford.
8	Goldsby RA, Kindt TJ, Osborne BA. (2007). Kuby's Immunology. 6th edition W.H. Freeman
	andCompany, New York.
9	Murphy K, Travers.P, Walport M. (2008). Janeway's Immunobiology. 7th edition Garland
	Science ,Publishers, New York.
10	Peakman.M.and Vergani D. (2009).Basic and Clinical Immunology,2nd edition Churchill,
	Livingstone Publishers, Edinberg.
11	Richard C and Geiffrey S. (2009). Immunology. 6th edition. Wiley Blackwell Publication.

VI SEMESTER MICROBIOLOGY PAPER-602T

Program Name	BSc in Micro	obiology	Semester	VI
Course Title	FOOD, DAIR	Y AND INDUSTRI	AL MICROBIOLOGY (Theory)	
Course Code:	MIC-602T		No. of Credits	04
Contact hours	60 Hours(4	Hours/ week)	Duration of SEA/Exam	2 ^{1/2} hours
Formative Assessment Marks		40	Summative Assessment Marks	60

Course Pre-requisite(s):

Course Outcomes (COs): After the successful completion of the course, the student will be able to: CO1. To understand the association of microbes in food and the quality testing of food

CO2. To understand the preservation and food safety protocols

CO3. To understand the methods of spoilage of food and the diseases associated with it

CO4. To learn the properties of milk and the types of preservation of milk.

CO5. To learn the types of fermented food and dairy products and its significance

CO6. Learn the overview of scope and importance of industrially important microbes

CO7.Acquaint with different types of fermentation processes and equipments

CO8. Evaluate the factors influencing the enhancement of cell and product formation during fermentation

CONTENTS	
Unit 1 Food microbiology	15 hrs
Microbes and food: Food as a substrate for microorganisms- Intrinsic and extrinsic	
parameters affecting the growth of microbes. Microorganisms in food and their	
sources(molds,yeast and bacteria)	
Food borne infections and intoxication Staphylococcus, Clostridium. Salmonella, Bacillus,	
Brucella, Listeria. Mycotoxin, Phycotoxins	
Fermented Food: Fermented vegetable-sauerkraut, pickles. Meat- sausage. Beverages-	
kombucha. Sourdough. Microbes as food- SCP, SCO. Nutraceuticals and Synbiotics	
Spoilage of Food, Preservation and Food safety-	
Spoilage: Principles of food spoilage. Sources of food contamination, Types of spoilage.	
Spoilage of meat and poultry, Fish and sea foods. Spoilage cereals, fruits and vegetables.	
Spoilage of canned food.	
Preservation: Principles of food Preservation. Methods of preservation-Physical	
(temperature, drying, irradiation), chemical (Class I and Class II). Bio preservation. Canning.	
Food Packaging-Types of packaging materials, properties and benefits.	
Quality testing of food- Rapid microbiological methods, Examination of fecal Streptococci	
Food sanitation and control-Good Hygiene practices, GLP, GMP (Waste treatment	
disposalmethods), HACCP, Food control agencies and their regulation	

Unit 2-Dairy Microbiology: History. Properties of milk. Types of milk- dried, liquid,	15 hr
condensed.	
Microorganisms in milk. Starter culture and its types-(single, mixed) Sources of contamination	n
of milk. Microbiological analysis of milk- Rapid platform tests (organoleptic, alcohol, COB,	
alcohol test, Phosphatase test, DMC, sedimentation test.). Reductase tests. SPC. Preservation	n
of milk- Pasteurization. Dehydration, sterilization Packing of milk and dairy products.	
Fermentation in milk: Lactic acid, gassy fermentation, souring	
Dairy products: Cheese- Types and production (Cheddar), Tofu, Yoghurt, Acidophilus milk.	
Prebiotics, Probiotics.	
Jnit-3: Introduction to Industrial microbiology	15 Hr:
Scope and concepts; Criteria for selection of industrially important microbes;	
Preservation of industrially important microbes. Types of fermentation process:	
Submerged fermentation, Solid state fermentation (Koji), batch fermentation,	
Continuous fermentation, kinetics of fermentation process.	
Fermentor: Basic features; design and components of a bioreactor; Specialized	
bioreactors and their applications: tubular bio reactors, fluidized bed reactor, packed bed	
reactors, membrane bioreactors, Photo-bioreactors and anaerobic bioreactors	
Jnit-4 DSP and Microbial technology	15 Hr
Sterilization of fermentor, Control of air, temperature, pH, foaming and feed; Aseptic	15 11
inoculation and sampling methods; Scale up of fermentation process-Merits and Demerits.	
Fermentation media: Strategies for media formulation; Natural and synthetic media;	
Role of buffers, precursors, inhibitors, inducers and micronutrients. Objectives and significance of downstream processing: Overview of steps in extraction and	
purification of product; Filtration and centrifugation; cell disruption- Physical, chemical and	
biological methods; Product extraction; product purification, recovery and product testing.	
General production strategies of microbial products and Downstream processing:	
Alcohol: Industrial alcohol and alcoholic beverages- beer, wine and whisky	
Organic acids: citric acid	
Vitamins: B12	
Amino acid: glutamic acid	
Antibiotics: Penicillin	
Enzymes: Amylase	
Bio fuels: methane and hydrogen gas production, types of substrate, process; Mechanism, by	
products, plant construction	
Vaccines- Hepatitis b	
Hormones- Human Insulin	1

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-15)

Course Outcomes (COs) / Program Outcomes(POs)		Program Outcomes (POs)													
		2	3	4	5	6	7	8	9	10	11	12	13	14	15
Learn the overview of scope and importance ofindustrially important microbes	٧														
Acquaint with different types of fermentationprocesses and equipments												7			
Evaluate the factors influencing the enhancementof cell and product formation during fermentation								٧							
Acquire the knowledge of the production ofvalue-added products											٧				
Acquire the knowledge of purification of value-added products											٧				

Pedagogy: Lectures, Seminars, Industry/Institute Visits, Debates, Quiz, Project and Assignments

Formative Assessment for Theory					
Assessment Occasion/ type	Marks				
Attendance	10				
Seminar	10				
Debate/Quiz/Assignment	10				
Class test	10				
Total	40 Marks				
Formative Assessment as per guidelines are compulsory					

VI SEMESTER MICROBIOLOGY PAPER-MIC-602 P

Course Title	FOOD, DAIRY AN MICROBIOLOGY			Practical Credits	2		
Course Code	MIC -602P			Contact Hours	4 Hours/Week		
Formative Assessment		25 Marks	Summat	ive Assessment	25 Marks		

PRACTICAL CONTENT

- 1. Isolation of bacteria and fungi from infected fruits and vegetables
- 2. Isolation of bacteria and fungi from fermented food and stored/ preserved food.
- 3. Reductase tests-MBRT/Resazurin
- 4. Fat estimation Gerber's method
- 5. Role of yeast in bread making
- 6. Bacterial examination by SPC, DMC
- 7. Production of yoghurt
- 8. Study of food borne pathogens- Staphylococcus, Salmonella, Aspergillus, Clostridium
- 9. Significant microbes in Food and Dairy: *Lactobacillus, Streptococcus, Penicillium, Rhizopus*
- 10. Wine production from selected fruits/vegetables
- 11. Production of /protease/cellulase/pectinase/invertase by solid substrate fermentation(with at least 2 substrates)
- 12. Production of enzyme (/protease/cellulase/invertase by submerged fermentation
- 13. Preservation of microbes with glycerol/soil/Silica gel method/lyophilization
- 14. Downstream technique- Demonstration of Microfiltration technique
- 15. Field visit to industry/organization related to microbiology

Pedagogy: Experiential learning, Problem solving, Project

Formative Assessment for Practical					
Assessment Occasion/ type Marks					
Test	15				
Attendance and Performance	10				
Total 25 Marks					
Formative Assessment as per guidelines are compulsory					

Refe	rences						
1	Arindam Kuilaand Vinay Sharma (2018) Principles and Applications of Fermentation Technology,Wiley.						
2	Casida L E.J.R. (2016) Industrial Microbiology, 2 nd edition, New Age International Publisher.						
3	Crueger W&A Crueger (2017). Cruegers Biotechnology: A Text Book of Industrial Microbiology.Edited by K.R. Aneja. Panima Publishing Corporation.						
4	Michael, J.W., Neil L. Morgan (2013) Industrial microbiology: an Introduction. Blackwell science						
5	5 Nduka Okafor, Benedict Okeke (2017). Modern Industrial Microbiology and Biotechnology. 2 nd Edition :CRC Press Publishers						
6	Stanbury P.F., W. Whitaker & S.J. Hall (2016). Principles of Fermentation Technology. 3 rd edition. Elsevierpublication						
7	Alexander N. Glazer, Hiroshi Nikaido (2014), Microbial Biotechnology: Fundamental of appliedMicrobiology, 2 nd Edition, Cambridge University Press						